Acute atrial arrhythmogenicity and altered Ca2+ homeostasis in murine RyR2-P2328S hearts
نویسندگان
چکیده
AIMS The experiments explored for atrial arrhythmogenesis and its possible physiological background in recently developed hetero-(RyR2(+/S)) and homozygotic (RyR2(S/S)) RyR2-P2328S murine models for catecholaminergic polymorphic ventricular tachycardia (VT) for the first time. They complement previous clinical and experimental reports describing increased ventricular arrhythmic tendencies associated with physical activity, stress, or catecholamine infusion, potentially leading to VT and ventricular fibrillation. METHODS AND RESULTS Atrial arrhythmogenic properties were compared at the whole animal, Langendorff-perfused heart, and single, isolated atrial myocyte levels using electrophysiological and confocal fluorescence microscopy methods. This demonstrated that: (i) electrocardiographic parameters in intact anaesthetized wild-type (WT), RyR2(+/S) and RyR2(S/S) mice were statistically indistinguishable both before and after addition of isoproterenol apart from increases in heart rates. (ii) Bipolar electrogram and monophasic action potential recordings showed significantly higher incidences of arrhythmogenesis in isolated perfused RyR2(S/S), but not RyR2(+/S), relative to WT hearts during either regular pacing or programmed electrical stimulation. The addition of isoproterenol increased such incidences in all three groups. (iii) However, there were no accompanying differences in cardiac anatomy or action potential durations at 90% repolarization and refractory periods. (iv) In contrast, episodes of diastolic Ca(2+) release were observed under confocal microscopy in isolated fluo-3-loaded RyR2(S/S), but not RyR2(+/S) or WT, atrial myocytes. The introduction of isoproterenol resulted in significant diastolic Ca(2+) release in all three groups. CONCLUSIONS These findings establish acute atrial arrhythmogenic properties in RyR2-P2328S hearts and correlate these with altered Ca(2+) homeostasis in an absence of repolarization abnormalities for the first time.
منابع مشابه
Flecainide exerts paradoxical effects on sodium currents and atrial arrhythmia in murine RyR2-P2328S hearts
AIMS Cardiac ryanodine receptor mutations are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), and some, including RyR2-P2328S, also predispose to atrial fibrillation. Recent work associates reduced atrial Nav 1.5 currents in homozygous RyR2-P2328S (RyR2(S/S) ) mice with slowed conduction and increased arrhythmogenicity. Yet clinically, and in murine models, the Nav...
متن کاملAlternans in Genetically Modified Langendorff-Perfused Murine Hearts Modeling Catecholaminergic Polymorphic Ventricular Tachycardia
The relationship between alternans and arrhythmogenicity was studied in genetically modified murine hearts modeling catecholaminergic polymorphic ventricular tachycardia (CPVT) during Langendorff perfusion, before and after treatment with catecholamines and a β-adrenergic antagonist. Heterozygous (RyR2(p/s)) and homozygous (RyR2(s/s)) RyR2-P2328S hearts, and wild-type (WT) controls, were studie...
متن کاملLoss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation.
AIMS Recent studies reported slowed conduction velocity (CV) in murine hearts homozygous for the gain-of-function RyR2-P2328S mutation (RyR2(S/S)) and associated this with an increased incidence of atrial and ventricular arrhythmias. The present experiments determined mechanisms contributing to the reduced atrial CV. METHODS AND RESULTS The determinants of CV were investigated in murine RyR2(...
متن کاملAbnormal Ca2+ homeostasis, atrial arrhythmogenesis, and sinus node dysfunction in murine hearts modeling RyR2 modification
Ryanodine receptor type 2 (RyR2) mutations are implicated in catecholaminergic polymorphic ventricular tachycardia (CPVT) thought to result from altered myocyte Ca(2+) homeostasis reflecting inappropriate "leakiness" of RyR2-Ca(2+) release channels arising from increases in their basal activity, alterations in their phosphorylation, or defective interactions with other molecules or ions. The la...
متن کاملPhysiological consequences of the P2328S mutation in the ryanodine receptor (RyR2) gene in genetically modified murine hearts
AIM To explore the physiological consequences of the ryanodine receptor (RyR2)-P2328S mutation associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). METHODS We generated heterozygotic (RyR2 p/s) and homozygotic (RyR2 s/s) transgenic mice and studied Ca2+ signals from regularly stimulated, Fluo-3-loaded, cardiac myocytes. Results were compared with monophasic action pot...
متن کامل